Mathematics Paper 1 Questions and Answers - Samia Joint Mock Examination 2023

Share via Whatsapp

Instructions to candidates.

  • This paper consists of two sections: Section I and Section II.
  • Answer all the questions in Section I and only five questions from Section II
  • Show all the steps in your calculations, giving your answer at each stage in the spaces provided below each question
  • Marks may be given for correct working even if the answer is wrong.
  • Non-programmable silent electronic calculators and KNEC Mathematical tables may be used, except where stated otherwise.

SECTION 1 (50 MARKS)

Answer all questions in the spaces provided.

  1. A sum of money is divided between three men x, y and z in the ratio 5:3:1. If y has Shs. 700/= more than z, calculate how much x has.
    (3 marks)
  2. Simplify the expression  12x2 + ax - 6ax2           (3 marks)
                                                 9x2 - 4a2              
  3. Find the integral values of x of which  (3 marks)
    5 ≤ 3x + 2
    3 x − 14 ≤ − 2
  4. The figure below shows triangle PQR in which PQ = 7cm, angle QPR = 100° and angle PRQ = 35°. Calculate to 2 decimal places the length of PR hence the area of triangle PQR.
                                                           MathsMocks2023Q1
  5. Evaluate without using a calculator  3 marks)
                23.4 − 2(5.2 + 5.3)
                       3.2 x 1.2 
  6. The figure below represents a kite ABCD. Use a pair of compasses and ruler only to rotate it through -60° about point P.  (2 marks)
                                                                      MathsMocks2023Q2
  7. Find the inverse of the matrix (1/3 1/1) hence determine the point of intersection of the lines. (4 marks)
          y + x = 7
          3x + y = 15
  8. A trader had a bag of rice, when he packed the rice in 6kg packets, he had 1 kg left over, when he packed the rice in 8kg packets, again he had 1kg left over. When he packed the rice in 9kg packets, he had 1kg left over. What is the smallest amount of rice that he must have had.
    (3 marks)
  9. A Histogram is drawn from the set of data given below. Complete the missing bars.  (3 marks) 
     Marks    6-10    11-20    21-35    36-55    56-65
     Frequency     8     14      18      24      10 
  10. Kinyua marked an article at Kshs. 1200/- and sold it to a customer at a discount of 15%. Find the percentage profit he made if he had bought the article at Kshs. 900/=.                (3 marks)
  11. The diagram below represents a solid of a conical frustrum. (Use π 22/7) (4 marks)
                                                                             MathsMocks2023Q3
    Calculate the volume of the solid
  12. Given that a = (−28), b = −64) and c = −4 2 and given that = 4a − 8b + 6c, find /P/  (3 marks)
  13. Evaluate using tables of reciprocals  (3 marks)
         5      +    1     
       807      0.0591
  14. Solve for x in the following equation  (3 marks)
           MathsMocks2023Q4
  15. Each interior angle of a regular polygon is four times greater than the exterior angle. How many sides does this polygon have?  (3 marks)
  16. A boat is at point P, a distance of 100km from the bottom of a hill. The angle of elevation of the top of the hill is 30° from P. The boat sails straight towards the hill to a point Q from where the angle of elevation to the top of the hill is now 60°. Calculate the distance PQ   (3 marks)

SECTION II (50 MARKS)

Answer only five question from this section in the spaces provided.

  1. Given that a line L1 passes through the points A(−1, 5) and B (3, −1), find
    1. The equation of line L1 in the form y = mx + c     (2 marks)
    2. The equation of a line L2, which is a perpendicular bisector of L1. Leave your answer in the form
      ax + by = c where a, b, c are integers  (3 marks)
    3. Given that another line L3 is parallel to L2 and passes through point (−3, −5) and intersects lines L1 at point P. Find the equation of L3 in the form ax + by +c = 0  (2 marks)
    4. The coordinates of the point of intersection of lines L1 and L3   (3 marks)
  2. Four towns P, R, T and S are such that R is 70km directly to the north of P and T is on a bearing of 280° from P at a distance of 75km. S is on a bearing of 320° from T and a distance of 45km.
    1. Using a scale of 1cm to represent 10km, make an accurate scale drawing to show the relative position of the towns. (4 marks)
    2. Using your diagram above, find the distance in km of
      1. R from T  (3 marks)
      2. S from R
    3. From your diagram, what is the compasses bearing of (3 marks)
      1. R from T
      2. P from S
  3. Nyaugenya bus leaves Port Victoria for Eldoret at 7:00 a.m. at an average speed of 80km/h. Climax bus leaves Eldoret towards Port Victoria at 7:30 a.m on the same day using the same route at an average speed of 60km/h. The distance from Eldoret to Port Victoria is 450km. After travelling for one hour and a half, climax bus developed a mechanical problem which took 45 minutes to repair before continuing at its speed in the same direction.
    1. Determine the time when the two buses met. (4 marks)
    2. Calculate the distance from Eldoret at the time of the two buses meeting.  (3 marks)
    3. For how long did the Nyaugenya bus stay in Eldoret before Climax bus arrived at Port Victoria.  (3 marks)
  4.  
    1. On the grid provided draw triangle ABC with vertices A(0, -1), B(4, 3) and C(2, 2)   (1 mark)
        MathsMocks2023Q5
    2. Draw triangle A1B1C1, the image of ABC under a translation defined by the translation vector T = (1 −2)  (3 marks)
      Write down the coordinates A1B1C1.
    3. A11B11C11 is the image of ABC under an enlargment, scale factor −2, centre (3,1). On the same grid draw A11B11C11 and write down its coordinates.
    4. Draw A11B11C11, the image of A11B11C11, 1 under reflection on the line x = 0
  5. The motion of a particle P moving along a straight line is described by the equation S = (8+10t)t – t3
    Calculate;
    1. The distance when t = 3 sec.  (2 marks)
    2. The maximum velocity of the motion. (4 marks)
    3. The acceleration of motion after 4 seconds.  (2 marks)
    4. The time at which the velocity is zero.  (2 marks)
    1. Use the trapezium rule with 8 ordinates to approximate the area under the curve   (5 marks)
      y = x+ x + 3 and the x-axis between lines x = −3 and x = 4 
    2. Use the mid-ordinate rule with 5 strips to calculate the area under the curve y = 3x2 + 8 and bounded by lines y = 0, x = 1 and x = 6.
      (5 marks)
  6. Three people; A, B and C work together to make a certain number of tins. It person C was to work alone he will take 44/hours to complete the job. If all working together they will take 1 hour 40 min. to complete the job. They all started working together however person B left after the first 40 minutes, while person C left 20 minutes later. Person A took a further 1hr 46mins. Calculate how long it would take if all the tins were made by;
    1. Person A alone  (6 marks)
    2. Person B alone (2 marks)
    3. Person A and C alone  (2 marks)
  7. In Busia County, a tailor bought a number of suits at a cost of Shs. 57,600/= from a wholesaler. Had he bought the same number of suits from a supermarket, it would have cost him Shs. 480/= less per unit. This would have enabled him to buy four extra suits for the same amount of money.
    1. By letting the number of suits that the tailor bought to be n, write an expression in n for cost of a suit from;
      1. The wholesaler (1 mark)
      2. The supermarket (1 mark)
    2. Find the number of suits that the trailer bought  (4 marks)
    3. The tailor later sold each suit for Shs. 720/= more than he paid for it. Determine the percentage profit he made.    (4 marks)

MARKING SCHEME 

 No.  Working   Marks Allocation 
 1.   3 − 1 = 2
  700 x 5
       2
 sh. 1750
   B1 - difference in ratio
   M1
   A1           
        03 
 2.  12x2 + 9ax − 8ax − 6a2
  3x(4x + 3a) −2a(4x + 3α)
  (4x + 39) (3x − 2a)

  (3x − 29) (3x + 2a)
  (4x + 39)(3x − 29)
    (3x − 29) (30 + 24)
        4x + 39
        3x + 29
   B1

   B1

   A1

       03
 3.

  3 ≤ x
  1 ≤ x
      or
   x ≥ 1
   3x ≤ 12
    x ≤ 4
      or
   4 ≥ x
   x = 1, 2, 3, 4

   B1

   B2



   A1
       03
 4.

               7       =  QR   
            Sin 35    sin 100
            QR = 12.02 cm

             ½ x 7 x 12.02 Sin 45
        =   29.75cm2

   M1
   A1  ( C.A.O)
   M1
   A1
       04
5.      2.4 
    3.84
    24 x 10
       384
      =  0.625
  M1 - for simplifying 
  M1 - for cancellation
  A1  ( C.A.O) DO NOT AWARD IF FRACTION
      03
6.  MathsMocks2023Q6     B1 - for 60° measurement clockwise about                      0
    B1 - for correct diagram
      02
7.     (1 x 1) − (3 x 1)
     MathsMocks2023Q7
   M1 - For determinant
   A1 - C.A.O
   M1 - For premultipying by inverse
           otherwise award 0
   A1
 
       04
8.   MathsMocks2023Q8
  LCM = 23 x 32
           = 72
  Amount of rice = 72 + 1
                          = 73 kg
   M1 - For finding lcm



   M1 - for adding 1
   A1
      03
9.   MathsMocks2023Q9   B1 - Each correct bar B1 
  Three correct bars drawn 
      03
10  S.P = 85 x 1200
          100
        = 1020
  profit = 1020 − 900
           = 120
  % profit = 120 x 100
                    900
               = 13 1/3 or 13.3 or 13.33%
    M1 - for selling price                        calculations

    M1 - for % profit calculation
    A1
        03
11.

      h    =    2.1
   h + 4       4.9
   h = 3
   Vol = 1/3 x 22/7 ( 4.92 x 7 − 2.12 X 3)
         = 162.2133 cm3

   M1 - for finding height of the                   original cone
   B1 - for height
   M1 - for finding volume
   A1
        04
12.

  P   = 4 (−2 8) −8 (–6 4) + 6(–4 2)
        = (16 12)
  /P/ = √162 + 122
       = 20 units  

  M1 - for substitution
  M1 - for calculation of magnitude
   A1
       03
13.   (5 X 0.1293 X 10−2)
    0.006195
   0.1692 X 102
     16.92
   0.006195 + 16.92 = 16.926195
  B1 - for finding reciprical using                tables
  B1 -  for finding reciprical using                tables
   A1 - no mark for using calculators
           C.A.O
        03
14.  (2−2)(x − 2)  =  2(x + 2)
   −2x + 4 = x + 2
     x = 2/3
  M1 - for expressing to similar                   base.
  M1 - for interpretation of equation
   A1
       03
15.   x + 4x = 180
         x = 36
  n = 360
         36
     = 10
  M1

  M1
  A1
      03
16.    tan 30 = h/100
  100tan30 = h
   tan 60 =  100tan30
                    100 − x
    x = 662/3km or 66.6km
  M1 - for finding height
  M1 - for substituting height
   A1 - Accept 4.sf.
      03
17.
  1.  M1−1 − 5
              3− (−1)
          = −3/
      y − 5  = − 3
      x −(−)       2 
     y = −3/2x + 7/2

  2. M2 = 2/3
    Midpoint = (1,2)
    y − 2 = 2
    x − 1    3
    2x − 3y = − 4 or −2x + 3y = 4

  3. M3 = 2/3
    y − (−5) =  2
    x − (−3)     3
    2x − 3y − 9 = 0 or −2x + 3y + 9 = 0

  4. 2x − 3(−3x + 7) − 9 = 0
                 2      2
    x = 3
    y = −3 x 3 + 7
           2           2
       = −1
    P(3, −1)

  M1 - correct substitution
  A1

 

  

  B1 - for both M2 & midpoint                   correct
  M1 - correct substitution
   A1

 

 

 M1 - correct substitution
 A1 

 

 

  M1 - correct substitution
   

  M1 - correct substitution

  A1

 

       10
18.
  1.   
    MathsMocks2023Q10
  2.  
    1.   9.4 x 10 
         94km ± 1km 

    2.  10.5 x 10 
        105km ± 1km 
  3.  
    1. N52°E ± 1°
    2. S65°E ± 1°

 

 

 

 

 

   

 

   
   M1
   A1
   
   M1
   A1

   B1
   B1

19.
  1.  Distance by Nyangenya = 80 x (½ + 1½ + ¾)
                                             = 220km
     Distance by Climax = 60 x 1½ 
                                    = 90km
    RD = 450 − (220 + 90)
          = 140km
    RS = 80 + 60
          = 140km/h
    T = 140
          140
        = 1hr
    Time of meeting = 7:30
                                  3:15
                               = 10.45 a.m
  2. Time by Climax bus = 1.5 + 1
                                     = 2.5h
    Distance = 60 x 2.5
                   = 150km
  3. Time taken by Nyangenya =  150
                                                    80
                                               =  17/8 hr
    Time taken by Climax =  300
                                             60
                                        = 5h
    Time difference = 5h − 17/8
   B1 - for distcance by both buses



   B1 - for both RD & RS


   M1



    A1
   M1

   M1
   A1(accept relevant alternative)
   M1


   M1


      10
20.
  1.  
    MathsMocks2023Q11
  2. A1 (1, −3) , B1 (5, 1), C1(3, 0)

  3. A11 (7, 9), B11 (−1, 1), C11 (3, 3)

  B1 - for correct Δ ABC
  B2 - for correct Δ A1B1C1

  B3 - for correct Δ A11B11C11

 

   B2 - for correct Δ A111B111C111

 

 

 

 

 

 

 

  B1 - for correct co-ordinates

  B1 - for correct co-ordinates

      10
21.
  1.  s = (8 + 10(3))3 − 33
       = 87 m

  2. v = 8 + 20t − 3t2
    a = 20 − 6t
    6t = 20
    t = 10/3
    v = 8 + 20 (10/3) −3(10/3)2
      = 411/3 or 41.3
  3. a = 20 − 6(4)
      = 4m/s2
  4. 8 + 20t − 3t2 = 0
    MathsMocks2023Q12
    = 7.045 sec 0r − 0.375
    ∴ t = 7.045 sec

  M1 - correct substitution
  A1
  
  B1 - for correct a
  M1 - for correct substitution
  M1 - for correct substitution


  A1
  M1 - correct substitution
  A1


  M1 


  A1

 

     10
22. 
  1.   
     x  − 3  − 2  − 1  0  1   2   3   4
     y = x2 + x +3   9 15  23

    A = ½ x 1{(9 + 23) + 2(5 + 3 + 3 +5 + 9 + 15)}
       = 56 sp. units
  2.  
     x   1.5  2.5   35   4.5   5.5 
     y = 3x2 + 8  14.75  2
    6.75 
     44.75   68.75   98..75

    A = 1(14.75 + 26.75 + 44.75 + 68.75 + 98.75)
       = 253.75 sq units
  B3 - for all correct
  B2 - for any 5 correct
  B1 - for any 3 correct

  M1
   A1

 
   B1 - for all correct
   B2 - for all correct
   B1 - for any 3 correct

    M1
     A1

        10
 23
  1.  A + B + C ⇒ 1h 40 min = 5/3h
      ∴ Work done in 1h = 3/5
    ⇒ work done in 40min
          40/60 x 3/5 = 2/5
    Let work completion by A and B be a and b respectively.
    C  takes 40/9 h
    ∴ When B leaves, work done by A and C = 20/60 (1/9 + 9/40)
                                                                     = 1/3a + 3/40
    When C leaves, work done by A = 1/a (53/30a
                                                        = 53/30a
    ∴ Completing the job 
       2/5 + 1/3a + 3/40 + 53/30a = 1
                                        a = 4h
  2. 1/4 + 1/b + 9/40 = 3/5
                 1/b = 1/8
                   b = 8h
  3. 1/4 + 9/10 = 19/40

   B1 - for work done in 40                minutes

   M1 - for work done by 
           A & C
   B1 

 

 

   M1 - for work done by all

    A1

 

    M1 - for work done by the              3
     A1

     M1 - for work done by A

 24
  1.   
    1.  57600
           n
    2. 57600
       n + 4
  2.  
    57600 − 57600 = 480
        n          n + 4
    n2 + 4n − 380 = 0
    MathsMocks2023Q13
    n = − 24 or 20
    ∴ No. of suits bought = 20
  3. 720 x 20
     1400

    14400 x 100
    57600
    = 25%
  B1 

  B1


  M1 
  B1 - for correct quadratic                equation
  M1 - accept any other                    method 

  A1

  M1
  B1 
  M1

  A1 - acccept alternative
Join our whatsapp group for latest updates

Download Mathematics Paper 1 Questions and Answers - Samia Joint Mock Examination 2023.


Tap Here to Download for 50/-




Why download?

  • ✔ To read offline at any time.
  • ✔ To Print at your convenience
  • ✔ Share Easily with Friends / Students


Get on WhatsApp Download as PDF
.
Subscribe now

access all the content at an affordable rate
or
Buy any individual paper or notes as a pdf via MPESA
and get it sent to you via WhatsApp

 

What does our community say about us?