Mathematics Paper 1 Questions and Answers - Lainaku II Joint Mock Examination 2023

Share via Whatsapp

Instructions to candidates

  • This paper consists of TWO sections I and II.
  • Answer ALL questions in section I and any five from section II.
  • Show all the steps in your calculations giving your answers at each stage in the spaces below each question.
  • Marks may be given for correct working even if the answer is wrong.
  • Non-programmable silent electronic calculation and KNEC Mathematical tables may be used.

SECTION I (50 Marks)
Answer all questions in this section in the spaces provided

  1. Without using mathematical table or a calculator, evaluate: (3 mks)
         36 – 8x -4 – 15 ÷ −3
           3x -3 + -8 (6 - (-2)
  2. SimplifyMathpstMockQ1 leaving your answer as a simple fraction (3 mks)
  3. Solve the inequality −3x + 2 < x + 6 ≤ 17 – 2x and write down the integral values satisfying the inequality. (3 mks)
  4. A triangle whose area is 16cm2 has its shortest side as 12cm. Find the length of the shortest side of a similar triangle whose area is 36cm2 (3mks)
  5. Solve for x given that 52x + 2 – 20 x 52x = 625 (3mks)
  6. The line y = mx + 6 makes an angle of 780 581 with the x – axis. Find the co-ordinates of the point where the line cuts the X – axis. (3mks)
  7. 3g of metal A of density 2.7g/cm3 is mixed with 1.6cm3 of metal B of density 3.2g/cm3
    Determine the density of the mixture (3mks)
  8. A two digit number is such that when the digits are reversed, the value of the number increases by 36. If the sum of the unit digit and twice the tens digit is 16, find the number. (3mks)
  9. On Monday the currency exchange rate was
                     1 Euro (E) = Kshs.95.65
                     1 US dollar($) = Ksh.76.50
    A gentle man Tourist decided to exchange half of his 2400E into Dollars.
    Calculate to 2 decimal places the number of dollars he received. (3 marks)
  10. In the figure given below, AC is an arc of a circle centre B. Angle ABD = 60°, AB = BC = 7cm and CD = 5 cm.
                                                                            MathpstMockQ2
    Calculate (3 d.p)
    1. The area of triangle ADB (2mks)
    2. The area of the shaded region. (2mks
  11. If cos A = − 40 and A is obtuse, find without using tables or calculators
                      41
    1. Sin A (2mks)
    2. Tan A (1mk)
  12. A matatu left town X at 9.37a.m. towards town Y at an average speed of 78km/h. At 9.47a.m. A car left the same venue at an average speed of 84.5km/h. Determine the time when the car caught up with the matatu . (3mks)
  13. Using a set square, a ruler and a pair of compasses, divide the given line into five equal parts. Measure the length of one part. (3 marks)
                                     MathpstMockQ3
  14. Simplify the expression.    x2 + 14x + 49 (3mks)
                                                   x2 − 49
  15. The acceleration of a particle in ms-2 is given by the expression Acc=3t –4
    Given that t=0 sec V=3m/s and S=0 metres
    Find:
    1. an expression for velocity Vms-1 (2 mark)
    2. An expression for distance S metres from a fixed point O. (2 marks)
  16. A salesman earns a basic salary of Kshs.19, 000 per month. In addition, he earns a commission of 5% for all sales above ksh.20,000. In February 2023, he sold goods worth 115,000. Calculate his total earnings that month . (3mks)

SECTION II (50 MARKS)
Answer only five questions

  1.  A triangle with A(-4, 2), B(-6, 6) and C(-6, 2) is enlarged by a scale factor -1 and centre (-2, 6) to produce triangle A1 B1 C1. Triangle A1 B1 C1 is then reflected in the line y = x to give triangle A11 B11 C11
    1. Draw triangle ABC, A1 B1 C1 and A11 B11 C11 and state the co-ordinates of A1 B1 C1 and A11 B11 C11 (6mks)
    2. If triangle A11 B11 C11 is mapped onto A111 B111 C111 whose co-ordinates are A111(0,−2), B111(4, −4) and C111 (0, −4) by a rotation. Find the centre and angle of rotation (4mks)
  2. A cylindrical water tank of diameter 5m and height 1.8m is supplied with water by pipe P of internal radius 2.5cm. Water flows through this pipe at the rate of 50m per minute. A drainage pipe Q can empty the full tank in 8 hours.
    1. Calculate the time in hours that pipe P alone would take to fill the empty tank (4mks
    2. The tank is initially half full. Water flows through pipe P into the tank for 2 hours. The drainage pipe Q is then opened and both pipes left running.
      Determine how long it will take to fill the tank (6 mks)
  3. Ken and Jane cycle to school 20km away. Jane cycles at 2km/h faster than Ken and reaches there half an hour earlier. Given that the speed of Ken is xkm/hr. Find in terms of x
    1. The time taken by Ken. (1 mk)
    2. The time taken by Jane. (1 mk)
    3. Form an equation in x. (1 mk)
    4. Solve the equation in (a) above and find the speed of Ken and Jane. (7 mks)
  4. The table below shows some paired values of X and Y for a known curve.
     X  0.0  0.2   0.4   0.6   0.8   1.0 
     Y  0.0  0.4   1.6   3.6   6.4   10.0 
    By establishing how x and y relates.
    Estimate the area under the curve for the interval 0 < X< 1 using
    1. The mid – ordinate rule with five mid – ordinates. (4mks)
    2. The trapezium rule with five Trapezia. (2mks)
    3. If the exact area is 10/3 square units.
      Calculate the percentage error in the two estimates. (4mks)
  5. The following are speeds in m/s of the first 50 vehicles at a police check point.
     Speed
      in m/s
                                 x
     No. of
     vehicles
      f                             f(x)
     10 - 19
     20 – 29
     30 - 39
     40 - 49
     50 - 59
     60- 69
     70 – 79
     80 - 89
     90- 99
     100 -109
     3
     1
     2
     5
     6
    11
     9
     8
     3
     2

    1. Calculate the mean speed (4mks)
    2. Draw on the same axes using this information
      1. The Histogram (3 mks)
      2. The Frequency polygon (1 mk)
    3. Calculate the median speed. (2mks)
  6. A trader sold an article at sh.4800 after allowing his customer a 12% discount on the marked price of the article. In so doing he made a profit of 45%.
    1. Calculate
      1. The marked price of the article. (2 marks)
      2. The price at which the trader had bought the article (2 mks)
    2. If the trader had sold the same article without giving a discount. Calculate the percentage profit he would have made. (3 mks)
    3. To clear his stock, the trader decided to sell the remaining articles at a loss of 12.5%. Calculate the price at which he sold each article.
      (3 mks)
  7. The diagram below shows a parallelogram OPQR. Point M divides line PQ in the ration 2:3 PR and OM intersect at N. Given that OP = p and OR = r
                                                                 MathpstMockQ4
    1. Express the following vectors in terms of MathpstMockQ6  (2 mk)
      MathpstMockQ7                                               
    2. Given that    MathpstMockQ8
      By Expressing ON in two different ways find the ratio in which N divides PR. (8 mks)
  8. The diagram below shows the graph of a moving matatu from Nakuru to Naivasha.
                                              MathpstMockQ5
    1. Find the acceleration of the matatu. (2mks)
    2. Find the deceleration of the matatu (2mks)
    3. Calculate the distance the matatu travelled while accelerating. (2mks)
    4. Calculate the distance the matatu covered while traveling at an acceleration of 0m/s2 (2mks)
    5. Find the distance between the two Towns. (2 mks)

MARKING SCHEME

   SECTION A    
 1.    36 + 32 + 5   

  3x −3 + −8 (8)
        73   
     − 73
  = − 1

 

 M1
 M1

  A1

 Simplification of num
 Simplification of deno
      03  
 2.   MathpstMockQ9   

 M1

 M1

 A1

 Removal of fractional powers.
 Removal of negative power and simplim
      03  
 3.    −3x + 2 < x + 6
   −4 x < 4
      x > −1
    x + 6 ≤ 17 – 2x
    3x ≤ 11
     X ≤ 11/3
    −1< x ≤ 3 2/3
    Integral values of x={ 0, 1, 2, 3}
 

 B1

 B1

 B1

 
     03  
 4.      A.S.F = 16:36
     A.S.F = 4/9
     L.S.F = √4/9
               = 2/3

            2/3 = 12/x
      = 12 x 3
             2
      = 18 cm

 

 B1

 M1

 A1

   For  L.S.F




   Equating the ratios
     03  
 5.     Let U=52X

   52X(52) - 20(52X) = 625
   25U - 20U = 625
   U=125
   5U = 625
   5        5    
   U = 125

   52X = 53
   2x = 3
    X = 3/2
    x = 1.5

 M1

 

 M1

 

 

 

 

 A 1

 Expressing in the same base
     04  
 6.  Gradient = Tan 78° 581
                = Tan 78.97°
 Gradient = 5.130
   y = 5.13x + 6
   At x –axis, y = 0
   0 = 5.13x + 6
   X = − 1.17
   Co-ordinate (−1.17, 0)
 

 B1

 M1

 A1

 

 Gradient

 Substitution for y=0

 Co- ordinates

     04  
 7.   Metal A: Volume =   mass  
                                 density 
                             =   3g        
                                2.7 g/cm3
                             = 1.111cm3
  Metal B: Mass = d x v
                          = 1.6 x 3.2
                          = 5.12g
  Total mass = 5.12 + 3 (mixture)
                          = 8.12g
  Total volume = 1.111 + 1.6
                       = 2.711
  Density =   8.12
                    2.711
   = 2.995g/cm3
 

 M1

 M1

 A1

   For both vol &mass
     04  
 8.

 Let no.be = xy
 10x + y is the value of the number
 ⇒ reversing digits, the new value is 10y + x
 ∴ 10y + x – (10x + y) = 36
 10y + x – 10x – y = 36
 9y – 9x = 36
 9(y – x) = 36

 y – x = 4…..(i) 
 y + 2x = 16 …..(ii)
 y – x = 4
 y + 2x = 16
 −3x = −12
 x = 4
 and y – 4 = 4
 y = 8
 ∴ number is 48

 

 M1

 M1

 A1

 

   For both equations✔

✔elimination of one variable or equivalent

     03  
 9.  ½ of 2400E = 1200E

 In ksh. = 1200E x 95.65
 = Ksh.114,780
 Number of dollar = Kshs.114,780
                                           76.50

 = 1500.39 dollars ( to 2 d.p)

 

 M1

 M1

 A1

 For conversion.
     03  
 10. 
  1.  
    Area of triangle ADB is ½ x 7 x 12 sin 60°
                                   7 x 6 sin 60°
                  = 36.373cm2 (to 3 d.p)
  2.  
    Area of unshaded sector
     60 x 22 x 7 x 7 = 25.6667
    360    7
    Shaded area = 36.373 − 25.667
    = 10.706cm2 (to 3 d.p)

 M1

 A1

 M1
 A1

  Exp for the area
     04  
 11.

        MathpstMockQ11

             Sin A = 9/41 
             Tan A = − 9/40 (the ans must be –ve)

 

 BI

 B1

 B1

  

 Sin Ratio
 Accept 0.2195

 Tan Ratio
 Accept − 0.225

     03  
 12.    9.47 – 9.37 = 10min
 60min = 78km/hr
            = 10 x 78
               60
 Dist. apart = 13km
 R.S = (84.5 – 78) = 6.5km/hr
Time taken = 6.5
Time to
Catch up = 9.47a.m. + 2hrs
               = 11.47 a.m.
 

 M1

 M1

 

 


 A1

  Exp for Dist apart
     03  
 13.    MathpstMockQ12
    Length of one part = 2.5cm
 

 B1

 B1

 B1

  

 Drawing a line at an acute angle

 Subdividing the line

 Accept 2.4cm or 2.6cm

      03  
 14.   Num = (x + 7) (x +7)

  Den = (x + 7) ( x – 7)
    (x + 7) (x +7)
    (x + 7) ( x – 7)
    x + 7
    x - 7

 

 M1

 M1

 A1

  

 Num simplified

 Deno simplified

     03  
15.

  dv = 3t – 4
  dt

  1. V= ∫3t – 4dt
    V= 3t2 − 4t + c
           2
    Since V = 3 when t = 0
    Then
    3(0)2 − 4(0) + c = 3
       2
    c = 3
    V= 3t2 − 4t +3
           2
  2. S = MathpstMockQ13
    = t3 – 2t2 +3t + k
       2
    = S = 0, when t = 0
       k = 0
    s = t3 – 2t2 + 3t
          2
 

M1

 

 

 

 

A1

 

 

 

M1

 

 

A1

 
      04  
 16.   Extra sales = Kshs. 115,000

                                − 20,000
                         Kshs. 95,000
  Commission earned = x 95,000 = 4,750
                                    100
  Total earning = 4,750 + 19,000
                        = Kshs. 23,750

 

 M1

 M1

 A1

  Exp for the commission
     03  
 17. MathpstMockQ14 (a)  B1 for object drawn
       B2 1st image drawn
       B1 coordinates of 1st image
       B2 for 2nd image & its coordinates given
 
(b)  B1 for the 1st bisector
      B1 for the 2nd bisector
      B1 for the centre of rotation C(5,−1)
      B1 for the angle of rotation =180° or equivalent
   
     10  
 18.
  1. Rate of water flow
    = 22/7 x 2.5 x 2.5 x 5000
    = 98,214.28571cm3
    Volume of tank = 22/7 x 2.5 x 2.5 x 1.8
               = 35.35714286 m3
    35.35714286 x 1000000
               98214.28571
    = 360mins
    = 6hrs
  2. Half full ⇒ pipe has worked for 3hrs
    Additional ⇒ 2 hours
    Total hours = 2 + 3
                      = 5 hrs
    Fraction of
    Tank without water = 1 – 5/6
                                   = 1/6 of tank
    Both taps working together
                  = 1/61/8
              = 1/24 of tank
    1/24 of tank filled in 1hr
    1/6 of tank = ?
       = 1/6 x 24/1 x 1
       = 4hrs

 M1

 M1

 M1

 A1

 M1

 M1

 M1

 

 A1

 M1

 

 A1

 Rate of flow

 

 vol of tank

 

 

 Division

 

 NB
 Follow through for other   possible alternative   methods

     10  
 19.  Ken’s speed = x km/h.

 Distance = 20km.

  1. Time taken by Ken = (20/x)hrs
  2. Time taken by Jane = (20/x+2)hrs
  3. 20/x20/x+2 = ½
  4. 20x2 (x+2) – 20 x 2 x x = x(x + 2)
    20 x 2(x + 2) – 20 x 2 x X = x2 + 2x

    40x + 80 – 40x = x2 + 2x
    x2 + 2x – 80 = 0

    x2 - 8x +10x – 80 = 0
    (x + 10)(x – 8) = 0
    Either x = -10 or x = 8
    ∴ Ken’s speed = 8km/h
    and Jane’s speed=10km/h

 B1

 B1

 B1

 M1

 M1

 M1

 M1

 A1

 B1

 B1

 

 For the correct eqn.
 Accept equivant

 Removal of fractions and   partial factorisation

 For the eqn

 Removal or fractions

 Quadratic eqn equated to 0

 Partial simplification

 Factorization equated to 0

 Accept equivalent   methods

     10  
 20.
  1. x and y are related by the eqn y = 10x2  
     X  0.0  0.2   0.4   0.6   0.8   1.0 
     Y  0.0  0.4   1.6   3.6   6.4   10.0 
    Area = 0.2(0.1 + 0.9 + 2.5 + 4.9 + 8.1)
            = 3.3 square units
  2. Trapezium rule
    Area = ½ x 0.2 ( 0.0 + 10.0 ) + 2 ( 0.4 + 1.6 + 3.6 + 6.4 )
    = 0.1 (10) + 2 (12)
    = 0.1 x 34
    = 3.4 square units

  3.  % error in mid ordinate rule
     10 − 33 x 100
      3     10         
            10
             3  = 1%
    % error in trapezium rule
     10 − 17 x 100
      3     5         
            10
             3   =  2%
 

 B2

 M1


 A1

 

 M1

 A1

 M1

 

 A1

 M1

 

 A1

  

 All mid values✔
 B1 for any 3✔

 ✔substitution

     10   
 21.  
 Speed   Mid/points(x)   class  f   fx     c.f
 10-19   14.5   9.5-19.5  3  43.5   3 
 20-39   24.5  19.5-29.5  1  24.5   4 
 30-39   34.5  29.5-39.5  2  69   6 
 40-49    44.5  39.5-49.5  5  222,5  11
 50-59   54.5  49.5-59.5  6  327  17
 60-69   64.5  59.5-69.5  11  709.5  28
 70-79  74.5  69.5-79.5  9  670.5  37
 80-89  84.5  79.5-89.5  8  676  45
 90-99  94.5  89.5-99.5  3  283.5  48
 100-109  104.5  99.5-109.5  2  209 50
  Σf= 50  Σfx= 3235  

  x = mean speed = Σfx
 Σf
 = 3235 = 64.7 m/s
       50
           MathpstMockQ15
  

 (c) Median speed will be given by 25th vehicle.
      Median = 59.5 + 8 x 10 =
                                    11
                  = 66.7727m/s

 

M1

 

 

M1

 

 

M1

 

 

A1

S1

 

 

B2

 


B1

 

M1

 

 

 

A1

  

✔values for all   the mid pts

 for all the fx   values✔

 Correct linear   scale

 All bars
 Polygon

     10  
 22.
  1.   
    1.  S.P. = 88%

          88% =shs.4800
          M.P.= shs 4800/88 x 100
          M.P. = sh.5454.54
      Accept M.P= Shs.5454.55

    2.  B. P.=145% = 4800
       B.P. = 48000 x 100
                         145
               = shs 3310.34
                  Shs 3310.35

  2. Profit= Shs.5454.50- 3310.30
    percentage Profit = 5454.54 – 3310.34 x 100
                                                  10
                  3310.34
                      = 0.6477 x 100
                      = 64.77%

  3.  87.5 x 3310.30
     100

    = shs 2,896.55

 

M1

 

A1

 

M1

 

A1

M1

M1

 

A1

M1

MI

A1

  

 Follow through

 

 

 

 

 

 

 For the profit

     10  
 23.
  1.  
    1. PR = PO + OR

              MathpstMockQ16

    2. OM = OP + PM
              MathpstMockQ17

  2. ON = KOM
                MathpstMockQ18
    ON = OP + hPR
                  MathpstMockQ189
    K = 1 – h ……………………….(i)
    2/5K = h………………………...(ii)
    Substituting for h in (i)
    K = 1 – 2/5K
    K = 5/7
    h = 2/5 (5/7)
    h = 2/7
    PN:NR=2:5
 

B1

 

 

 

B1

 

M1

M1

 

 

M1

 

M1

M1

 

A1

B1

 

B1

  

 For equating   eqn1 &2

 For extracting   the eqns.

     10  
24.
  1.  ACC = 15 – 0

                    20
              = 0.75m/s2

  2. Dece = 0 – 15
                    20
              = − 0.75m/s2

  3. Area = 1 x 20 x 15
                2
              = 150m

  4. Area = 20 x 15
            = 300m

  5. Area = 1 (20 + 60) X 15
                2
             = 600m

 M1

 A1

 M1

 A1

 M1

 A1

 M1

 A1

 M1

 A1

 
     10  
Join our whatsapp group for latest updates

Download Mathematics Paper 1 Questions and Answers - Lainaku II Joint Mock Examination 2023.


Tap Here to Download for 50/-




Why download?

  • ✔ To read offline at any time.
  • ✔ To Print at your convenience
  • ✔ Share Easily with Friends / Students


Get on WhatsApp Download as PDF
.
Subscribe now

access all the content at an affordable rate
or
Buy any individual paper or notes as a pdf via MPESA
and get it sent to you via WhatsApp

 

What does our community say about us?