Instructions
- This paper consists of two sections; Section I and Section II.
- Answer all the questions in Section I and any five questions from Section II
- Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question
- Marks may be given for correct working even if the answer is wrong.
- Non-programmable silent electronic calculators and Kenya National Examinations Council Mathematical tables may be used, except where stated otherwise.
SECTION I (50 Marks)
Answer all the questions in this section
- Use tables of squares, square roots and reciprocals only to evaluate: (4 marks)
- Three computer key boards and 2 charger cost Kshs. 5,100 while 4 similar keyboards and 3 similar chargers cost Kshs. 7,050. Use matrices to find the cost of each item. (4 marks)
- Given that the log 2 =0.30103 and log 3 = 0.47712 , without using a calculator or mathematical table, find the value of log 1080 . (3 marks)
- Simplify by rationalizing the denominator, (3 marks)
7 − 4
3 − 5 3+5 - Calculate the percentage error in the calculation of volume of a sphere of radius 7.0 cm (3 marks)
- Nadia a branding machine on hire purchase. The cash price of the branding machine is Kshs. 56,000. She pays a deposit of Kshs. 14,000 and followed by 24monthly installments of Kshs. 3,500 each. Calculate the monthly rate at which compound interest was charged. (3 marks)
- The figure below shows a circle centre A.
Find the equation of the circle in below in the form x2 + y2 + ax + by + c = 0, where a, b and c are integers. (3 marks)
Make x the subject of the formula (3 marks) - A quantity Z varies directly as the square of X and inversely as the square root of Y. If X increases by 20% and Y decreases by 36%, find the percentage change in Z. (3 marks)
- On the line PQ below,
- Use a ruler and a pair of compasses only to construct ∠PQR = 37½° such that R is on the upper side of PQ. (1 mark)
- By construction and using line QR, locate a point T on PQ such that PT: TQ = 4: 3 (2 marks)
- Use a ruler and a pair of compasses only to construct ∠PQR = 37½° such that R is on the upper side of PQ. (1 mark)
-
- Expand the expression below in increasing powers of x, leaving coefficients as fractions in their simplest forms
(1 − 3/10x)5 - Use the first three terms of the expansion in part (a) above to estimate the value of (0.97)5 (4 marks)
- Expand the expression below in increasing powers of x, leaving coefficients as fractions in their simplest forms
- John bought 3 brands of tea A, B and C. The cost price of the three brands were Kshs. 250, Kshs. 300 and Kshs. 450 per kilogram respectively. He mixed the three brands in the ratio 5:2:1 respectively. After selling the mixture he made a profit of 20%. How much profit did he make per kilogram of the mixture? (4 marks)
- A farmer has two tractors P and Q. Tractor P, working alone, can plough a piece of land in 5 hours while tractor Q would take 12/3 hours less than tractor P. Determine the time the two tractors ploughing together, would take to complete the work. (3 marks)
- In the figure below, O is the centre of a circle of radius 5 cm. TA and TB are tangents to the circle at A and B respectively. OT=13 cm
Using π = 3.142, calculate the shaded area, correct to 3 decimal places. (4 marks) - During an inter-schools games competition, hockey and basketball teams from Zeraki School took part. The probability that rugby team would win the first match was 5/8 while that of the hockey team losing was 1/7. Determine the probability that at least one team won the first match. (3 marks)
- Given that cos θ = 9/41 and 0°≤90°, find tan (90 − θ) +sin θ without using a mathematical table or a calculator. (3 marks)
SECTION II (50 Marks)
Answer any five questions in this -
- By taking integral values of x from x = −2 to x = 6, make a table of values for the function y = 3x(4−x) (2 marks)
- On the same pair of axes and using the scales: 1 cm for 1 unit on the x-axis and 1 cm for 5 units on the y-axis, draw the graphs of y = 3x(4−x) and
y = 5(x − 2) (4 marks) - From the graphs;
- Find the roots of the equation 3x (4−x) = 0 (1 mark)
- Write the maximum value of y = 3x(4−x) (1 mark)
- Deduce the roots to the equation 3x(4 − x) = 5( x − 2) (2 marks)
- Three ships P, Q and R are approaching a harbour T. P is 16 km due east of T. Q is 14 km from T on a bearing of 1300 and R is 26.31 km to the west of Q and on a bearing of 2400 from T.
- Make a sketch drawing showing the relative positions of the ships and the harbour (1 mark)
- By calculation, find
- The distance between P and Q
- The distance from R to T
- The bearing of
- The bearing of
- The table below shows how income tax was charged in a certain year.
Taxable Income
(Kenya pounds p.a.)Tax Rate
(Kshs. per Kenya pound)1 – 3,630 2 3,631 – 7,260 3 7,261 – 10,890 4 10,891 – 14,520 5 14,521 – 18,150 6 18,151 – 21,780 7 21,781 and above 7.5
Calculate:- Agnetta’s taxable income in Kenya pounds per annum (2 marks)
- The net tax she pays per month (6 marks)
- Apart from income tax, she also contributes monthly NHIF Kshs. 1,600, WCPS Kshs. 1,000. Calculate her net monthly pay (2 marks)
-
- The first term of an arithmetic progression is 3 and the sum of its first 8 terms is 164.
- Find the common difference of the arithmetic progression. (2 marks)
- Given that the sum of the first n terms of this arithmetic progression is 570, find n. (3 marks)
- The first, fifth and seventh terms of another arithmetic sequence forms a decreasing geometric progression. If the first term of the geometric progression is 64, find
- The values of the common difference of the arithmetic sequence (3 marks)
- The sum of the first 12 terms of the geometric progression. (2 marks)
- The first term of an arithmetic progression is 3 and the sum of its first 8 terms is 164.
- The figure below is a cyclic quadrilateral PQRS. Given that TRX is a tangent at R and O is the centre of the circle and that PSX is a straight line, angle PRS = 50° and angle QPR = 30° and cord RS = PS.
- Giving reason in each case, find the sizes of the following angles,
- ∠XRS (2 marks)
- ∠SXR (2 marks)
- ∠PQR (2 marks)
- Reflex ∠QOR (2 marks)
- Given that RX = 12cm, SX = 8cm, Find the length of chord PS. (2 marks)
- Giving reason in each case, find the sizes of the following angles,
- In triangle OAB below OA = a and OB = b. point M lies on ON such that OM : MA= 2:3 and point N lies on OB such that ON: NB = 5:1. Lines AN and MB intersect at X.
- Express in terms of a and b;
- AN (1 mark)
- BM (1 mark)
- Given that AX = hAN and BX = kBM, where h and k are constants
- Express OX in two different ways in terms of a, b, h and k (2 marks)
- Find the values of h and k (4 marks)
- Determine the ratio MX:MB (2 marks)
- Express in terms of a and b;
- The table below shows the wages of workers in a construction firm in Kenya Shillings deposited by selected students in a Zeraki School.
Wages (Kshs.) Number of
Workers510 – 519 2 520 – 529 4 530 – 539 9 540 – 549 11 550 – 559 10 560 – 569 6 570 – 579 5 580 – 589 3 590 – 599 1 - Calculate the mean wage (4 marks)
- Calculate the median wage (3 marks)
- On the grid provided, draw a frequency polygon to represent the information above. (3 marks)
-
- On the grid provided, draw triangle ABC with coordinates A(-2,6), B(2, 3) and C(-2, 3) (1 mark)
- ∆ABC is reflected along the line x+3=0 to obtain ∆A'B'C'. On the same pair of axes, draw ∆A'B'C'. (2 marks)
- Translate ∆A'B'C' through 10 2 and label the image as ∆A''B''C'' . Write down the coordinates of ∆A''B''C'' (3 marks)
- A'''6, -6, B'''2,-3 and C(6,-3)is the image of ∆A''B''C''after a transformation P. Plot ∆A'''B'''C''' and describe P fully. (2 marks)
- What single transformation would have mapped ∆ABC onto ∆A'''B'''C'''? (2 marks
MARKING SCHEME
NO. | WORKING | MARKS | REMARKS | ||||||||||||||||||||||||||||||||||||||||||||||||||
1. | 45.92 = (4.59 × 10)2 = 4.592 x102 = 21.068×100 = 2106.8 √12.08×10-3 = √1.208×10-4 = 1.0990 ×10-2 = 0.010990 1/1.0990×10−2 = 1/1.099 x 102 = 0.9136 × 100 = 91.36 4 × 91.36 = 365.44 2106.8 − 365.44 = 1,741.36 |
M1 M1 M1 A1 |
Square of 45.9 (2106.8 seen) Square root i.e. 0.010990 seen Reciprocal i.e. 91.36 seen 1,741.36 |
||||||||||||||||||||||||||||||||||||||||||||||||||
2. | 3k+2c=5100
4k+3c=7050 3 2 4 3 k c =5100 7050 Inverse=13×3-4×23 -2 -4 3 =3 -2 -4 3 Hence keyboard costs Kshs. 1200 and charger Kshs. 750 |
4 |
Forming matrix equation Premultiplying by inverse matrix Both values correct |
||||||||||||||||||||||||||||||||||||||||||||||||||
3. | 1080=23 x 33 × 5 1080=22 x 33 × 10 log 1080 = 2 log 2 +3 log 3 + log 10 log 1080 = 2 × 0.30103 + 3 × 0.47712 + 1 log 1080 = 0.60206 + 1.43136 + 1 log 1080 = 3.03342 |
M1 M1 A1 |
Expressing in logs |
||||||||||||||||||||||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
4. | 7(3 + √5)− 4(3 −√5) (3 − √5)(3 + √5) 21 + 7√5−12 + 4√5 32 − (√5)2 9+11√5 9 − 5 9 + 11√5 = 9 +11√5 4 4 4 |
M1 M1 A1 |
Rationalizing the denominator Simplification 9/4 + 11/4√5 seen |
||||||||||||||||||||||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
5. | Max V = 4/3 × π × 7.053 = 467.2035π Min V = 4/3 × π × 6.953 = 447.6031667π Actual V = 4/3 × π × 7.03 = 1372/3 A.E. = 467.2035π − 447.6031667π 2 A.E.= 9.80016665π % age error = 9.80016665π×100% 1372/3π % age error = 2.143% |
M1 M1 A1 |
0.05 + 0.05 + 0.05 3/140 × 100% 21/7% |
||||||||||||||||||||||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
6. | Total Amount of instalments = 24×3,500=84,000 Total payment = 84,000 + 14,000 = 98,000 Amount borrowed = 98,000 − 56,000 = 42,000 Let the rate of interest be r% per month 84,000 = 42,000(1 + r/100)24 84,000 = 1 + r/100)24 42,000 24√2 = 1 + r/100 1.0293 = 1 + r/100 → 102.93 = 100 + r r = 102.93 − 100 = 2.93% |
M1 M1 A1 |
Finding amount borrowed | ||||||||||||||||||||||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
7. | Centre 3, −2, radius = 4
(x − 3)2 + (y + 2)2 = 42 x2 + y2 − 6x + 4y − 3 = 0 |
B1 M1 A1 |
Identification of centre and radius x2 + y2 − 6x + 4y – 3 = 0 seen |
||||||||||||||||||||||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
8. | P2 = kx + 1 1 − kx P2 (1− kx) = kx + 1 P2 − kxP2 = kx + 1 P2 − 1 = kx + kxP2 or (− kxP2 − kx = 1 − P2) P2 − 1 = x(k + kP2) or x(− kP2 − k) = 1− P2 x = P2 − 1 or x = 1− P2 K + KP2 −kP2 − k |
M1 M1 A1 |
Removal of square root Grouping of terms in x |
||||||||||||||||||||||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
9. | Z = kX2 √Y X1 = 120X = 1.2X1 100 Y1 = 64Y = 0.64Y 100 Z1 = kX12 √Y1 Z1 = k(1.2X)2 √0.64Y Z1 = 1.44kX2 = 1.44Z 0.8Y 0.8 %age change = 1.44/0.8Z− Z X 100% z %age change = 144/80 − 1 × 100% = 80% |
M1 M1 A1 |
Value of Z1 Expression for % change |
||||||||||||||||||||||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
10. |
B1 B1 |
Dividing PQ into 7 equal parts Point R correctly located |
|||||||||||||||||||||||||||||||||||||||||||||||||||
2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
11. | 1 − 5(3/10x) + 10(3/10x)2 − 10(3/10x)3 + 5(3/10x)4 – (3/10x)5
1 − 3/2x + 910x2 − 27/100x3 + 81/2000x4 – 243/100000x5 = 0.859 |
M1 A1 M1 A1 |
Expansion using the binomial coefficient Substituting x = 0.1 into the expansion |
||||||||||||||||||||||||||||||||||||||||||||||||||
4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
12. | 5 × 250 + 2 × 300 + 1 × 450 5+2+1 = 287.50 120 × 287.50 100 = 345 |
M1 M1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
13. | P→5 hours→1/5→1 hour Q→5 −12/3 = 31/3 = 10/3 → 3/10→1 hour 1 hour both→1/5 + 3/10 = 1/2 1/2 →1hour 1→1×1×2 = 2 hours |
M1 M1 |
Amount of work done in 1 hour by both | ||||||||||||||||||||||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
14. | Let AOT = θ
cos = 513 Area of ∆ = 1/2×13×5×sin 67.38° |
M1 M1 M1 A1 |
Angle subtended by the radii at the centre Area of ΔTOA Area of sector |
||||||||||||||||||||||||||||||||||||||||||||||||||
4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
15. | Pat least 1 team won = P(RH') + P(R'H) + P(RH) = (5/8 x 1/7) + (3/8 x 6/7) + (5/8 x 6/7) = 5/56 + 18/56 + 30/56 = 53/56 |
M1 M1 A1 |
P(R'H') = 3/8 x 1/7 = 3/56 1 – 3/56 |
||||||||||||||||||||||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
16. | height = √412 − 92 = 40 tan (90 − θ) = 9/40 sin θ = 40/41 tan (90 − θ) + sin θ = 9/40 + 40/41 = 1969 1640 |
B1 B1 B1 |
Getting height of the triangle Values of tan (90 − θ ) and sin θ 1969 |
||||||||||||||||||||||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
17. |
|
B2 S1 P1 C1 L1 B1 B1 B1, B1 |
All values correct (B1 for at least 6 values correct) Given scales used Plotting the points Smooth curve drawn and labeled Line y = 5(x − 2) drawn |
||||||||||||||||||||||||||||||||||||||||||||||||||
10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
18. |
|
B1 M1 M1 M1 A1 M1 A1 |
Sketch correctly drawn Cosine rule applied Taking square root Sine rule applied 20.47 seen |
||||||||||||||||||||||||||||||||||||||||||||||||||
10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
19. |
|
M1 A1 M1 M1 M1 M1 M1, A1 M1 A1 |
First three bands Next two bands Last band Gross tax either p.a. or p.a. |
||||||||||||||||||||||||||||||||||||||||||||||||||
10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
20. |
|
M1 A1 M1 M1 A1 M1 M1 A1 M1 A1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||
10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
21. |
|
B1 B1 B1 B1 B1 M1 A1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||
10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
22 |
|
B1 B1 B1 B1 M1 M1 M1 A1 B1 |
Value of AN Value of BM First expression of OX Second expression of OX Comparing the coefficients Forming the two equations Solving the two equations Values of h and k |
||||||||||||||||||||||||||||||||||||||||||||||||||
10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
23 |
|
M1 M1 M1 M1, A1 M1 A1 S1 P1 L1 |
Median
All mid points (x) correct All fx correct cf column correct Substitution into median formula Appropriate linear scales used on both axes |
||||||||||||||||||||||||||||||||||||||||||||||||||
10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
24. |
|
B1 B1 B1 B1 B1 B1 B1 B1 B1 |
PQRS drawn Reflection along y=0 P'Q'R'S' drawn Coordinates P'Q'R'S' Rotation implied P''Q''R''S'' drawn Coordinates P''Q''R''S'' P'''Q'''R'''S''' drawn |
||||||||||||||||||||||||||||||||||||||||||||||||||
10 |
Download Mathematics Paper 2 Questions and Answers - Form 3 End Term 3 Exams 2023.
Tap Here to Download for 50/-
Get on WhatsApp for 50/-
Why download?
- ✔ To read offline at any time.
- ✔ To Print at your convenience
- ✔ Share Easily with Friends / Students