Mathematics Paper 2 Questions and Answers - Form 3 End Term 3 Exams 2023

Share via Whatsapp

Instructions 

  • This paper consists of two sections; Section I and Section II.
  • Answer all the questions in Section I and any five questions from Section II
  • Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question
  • Marks may be given for correct working even if the answer is wrong.
  • Non-programmable silent electronic calculators and Kenya National Examinations Council Mathematical tables may be used, except where stated otherwise.

SECTION I (50 Marks)

Answer all the questions in this section

  1. Use tables of squares, square roots and reciprocals only to evaluate: (4 marks)
    mathst3Q40
  2. Three computer key boards and 2 charger cost Kshs. 5,100 while 4 similar keyboards and 3 similar chargers cost Kshs. 7,050. Use matrices to find the cost of each item. (4 marks)
  3. Given that the log 2 =0.30103 and log 3 = 0.47712 , without using a calculator or mathematical table, find the value of log 1080 . (3 marks)
  4. Simplify by rationalizing the denominator, (3 marks)
      7    −     4  
    3 − 5     3+5
  5. Calculate the percentage error in the calculation of volume of a sphere of radius 7.0 cm (3 marks)
  6. Nadia a branding machine on hire purchase. The cash price of the branding machine is Kshs. 56,000. She pays a deposit of Kshs. 14,000 and followed by 24monthly installments of Kshs. 3,500 each. Calculate the monthly rate at which compound interest was charged. (3 marks)
  7. The figure below shows a circle centre A.
                                       mathst3Q41
    Find the equation of the circle in below in the form x2 + y2 + ax + by + c = 0, where a, b and c are integers. (3 marks)
    Make x the subject of the formula (3 marks)
    mathst3Q52
  8. A quantity Z varies directly as the square of X and inversely as the square root of Y. If X increases by 20% and Y decreases by 36%, find the percentage change in Z. (3 marks)
  9. On the line PQ below,
    1. Use a ruler and a pair of compasses only to construct ∠PQR = 37½° such that R is on the upper side of PQ. (1 mark)
      mathst3Q42
    2. By construction and using line QR, locate a point T on PQ such that PT: TQ = 4: 3 (2 marks)
  10.  
    1. Expand the expression below in increasing powers of x, leaving coefficients as fractions in their simplest forms
      (1 − 3/10x)5
    2.  Use the first three terms of the expansion in part (a) above to estimate the value of (0.97)5 (4 marks)
  11. John bought 3 brands of tea A, B and C. The cost price of the three brands were Kshs. 250, Kshs. 300 and Kshs. 450 per kilogram respectively. He mixed the three brands in the ratio 5:2:1 respectively. After selling the mixture he made a profit of 20%. How much profit did he make per kilogram of the mixture? (4 marks)
  12. A farmer has two tractors P and Q. Tractor P, working alone, can plough a piece of land in 5 hours while tractor Q would take 12/3 hours less than tractor P. Determine the time the two tractors ploughing together, would take to complete the work. (3 marks)
  13. In the figure below, O is the centre of a circle of radius 5 cm. TA and TB are tangents to the circle at A and B respectively. OT=13 cm
                                                  mathst3Q43
    Using π = 3.142, calculate the shaded area, correct to 3 decimal places. (4 marks)
  14. During an inter-schools games competition, hockey and basketball teams from Zeraki School took part. The probability that rugby team would win the first match was 5/8 while that of the hockey team losing was 1/7. Determine the probability that at least one team won the first match. (3 marks)
  15. Given that cos θ = 9/41 and 0°≤90°, find tan (90 − θ) +sin θ without using a mathematical table or a calculator. (3 marks)

                                                                                        SECTION II (50 Marks)
                                                                            Answer any five questions in this
  16.  
    1. By taking integral values of x from x = −2 to x = 6, make a table of values for the function y = 3x(4−x) (2 marks)
    2. On the same pair of axes and using the scales: 1 cm for 1 unit on the x-axis and 1 cm for 5 units on the y-axis, draw the graphs of y = 3x(4−x) and
      y = 5(x − 2) (4 marks)
    3. From the graphs;
      1. Find the roots of the equation 3x (4−x) = 0 (1 mark)
      2. Write the maximum value of y = 3x(4−x) (1 mark)
      3. Deduce the roots to the equation 3x(4 − x) = 5( x − 2) (2 marks)
  17. Three ships P, Q and R are approaching a harbour T. P is 16 km due east of T. Q is 14 km from T on a bearing of 1300 and R is 26.31 km to the west of Q and on a bearing of 2400 from T.
    1. Make a sketch drawing showing the relative positions of the ships and the harbour (1 mark)
    2. By calculation, find
      1. The distance between P and Q
      2. The distance from R to T
      3. The bearing of
      4. The bearing of
  18. The table below shows how income tax was charged in a certain year.
     Taxable Income
     (Kenya pounds p.a.)
     Tax Rate
     (Kshs. per Kenya pound) 
     1 – 3,630  2
     3,631 – 7,260  3
     7,261 – 10,890  4
     10,891 – 14,520  5
     14,521 – 18,150  6
     18,151 – 21,780  7
     21,781 and above  7.5
    During the year, Agnetta earned a basic salary of Kshs. 25,200 and a house allowance of Kshs. 12,600 per month. She was entitled to a personal tax relief of Kshs. 1,162 per month.
    Calculate:
    1. Agnetta’s taxable income in Kenya pounds per annum (2 marks)
    2. The net tax she pays per month (6 marks)
    3. Apart from income tax, she also contributes monthly NHIF Kshs. 1,600, WCPS Kshs. 1,000. Calculate her net monthly pay (2 marks)
  19.  
    1. The first term of an arithmetic progression is 3 and the sum of its first 8 terms is 164.
      1. Find the common difference of the arithmetic progression. (2 marks)
      2. Given that the sum of the first n terms of this arithmetic progression is 570, find n. (3 marks)
    2. The first, fifth and seventh terms of another arithmetic sequence forms a decreasing geometric progression. If the first term of the geometric progression is 64, find
      1. The values of the common difference of the arithmetic sequence (3 marks)
      2. The sum of the first 12 terms of the geometric progression. (2 marks)
  20. The figure below is a cyclic quadrilateral PQRS. Given that TRX is a tangent at R and O is the centre of the circle and that PSX is a straight line, angle PRS = 50° and angle QPR = 30° and cord RS = PS.
                                          mathst3Q44
    1. Giving reason in each case, find the sizes of the following angles,
      1. ∠XRS (2 marks)
      2. ∠SXR (2 marks)
      3. ∠PQR (2 marks)
      4. Reflex ∠QOR (2 marks)
    2. Given that RX = 12cm, SX = 8cm, Find the length of chord PS. (2 marks)
  21. In triangle OAB below OA = a and OB = b. point M lies on ON such that OM : MA= 2:3 and point N lies on OB such that ON: NB = 5:1. Lines AN and MB intersect at X.
                                                                 mathst3Q45
    1. Express in terms of a and b;
      1. AN (1 mark)
      2. BM (1 mark)
    2. Given that AX = hAN and BX = kBM, where h and k are constants
      1. Express OX in two different ways in terms of a, b, h and k (2 marks)
      2. Find the values of h and k (4 marks)
      3. Determine the ratio MX:MB (2 marks)
  22. The table below shows the wages of workers in a construction firm in Kenya Shillings deposited by selected students in a Zeraki School.
     Wages (Kshs.)  Number of
    Workers
     510 – 519    2
     520 – 529   4
     530 – 539   9
     540 – 549   11
     550 – 559   10
     560 – 569    6
     570 – 579    5
     580 – 589    3
     590 – 599    1

    1. Calculate the mean wage (4 marks)
    2. Calculate the median wage (3 marks)
    3. On the grid provided, draw a frequency polygon to represent the information above. (3 marks)
      mathst3Q1
  23.  
    1. On the grid provided, draw triangle ABC with coordinates A(-2,6), B(2, 3) and C(-2, 3) (1 mark)
    2. ∆ABC is reflected along the line x+3=0 to obtain ∆A'B'C'. On the same pair of axes, draw ∆A'B'C'. (2 marks)
    3. Translate ∆A'B'C' through 10 2 and label the image as ∆A''B''C'' . Write down the coordinates of ∆A''B''C'' (3 marks)
    4. A'''6, -6, B'''2,-3 and C(6,-3)is the image of ∆A''B''C''after a transformation P. Plot ∆A'''B'''C''' and describe P fully. (2 marks)
    5. What single transformation would have mapped ∆ABC onto ∆A'''B'''C'''? (2 marks

                                                                                       MARKING SCHEME

 NO.  WORKING  MARKS  REMARKS
 1.  45.92 = (4.59 × 10)2 = 4.592 x102 = 21.068×100
 = 2106.8
 √12.08×10-3 = √1.208×10-4 = 1.0990 ×10-2
 = 0.010990
 1/1.0990×10−2 = 1/1.099 x 10= 0.9136 × 100 = 91.36
 4 × 91.36 = 365.44
 2106.8 − 365.44 = 1,741.36
 

 M1

 M1

 M1

 A1

 

 Square of 45.9 (2106.8 seen)

 Square root i.e. 0.010990 seen

 Reciprocal i.e. 91.36 seen

1,741.36

 2.  3k+2c=5100

 4k+3c=7050

 3 2 4 3 k c =5100 7050

 Inverse=13×3-4×23 -2 -4 3 =3 -2 -4 3
 3 -2 -4 3 3 2 4 3 k c =3 -2 -4 3 5100 7050
 1 0 0 1 k c =1200 750 k c =1200 750

 Hence keyboard costs Kshs. 1200 and charger Kshs. 750

 4  

 Forming matrix equation

 Premultiplying by inverse matrix

 Both values correct

 3.   1080=23 x 33 × 5
  1080=22 x 33 × 10
  log 1080 = 2 log  2 +3 log 3 + log 10
  log 1080 = 2 × 0.30103 + 3 × 0.47712 + 1
  log 1080 = 0.60206 + 1.43136 + 1
  log 1080 = 3.03342
 

 M1

 M1

 A1 

 

 Expressing in logs
 Substituting given values of logs
 3.03342 seen

      3  
 4.   7(3 + √5)− 4(3 −√5)
       (3 − √5)(3 + √5)
   21 + 7√5−12 + 4√5
             3− (√5)2
      9+11√5
        9 − 5
      9 + 11√5 = 9 +11√5
           4           4    4
 

 M1

 M1

 A1

 

 Rationalizing the denominator

 Simplification

 9/4 + 11/4√5 seen

      3  
 5.  Max V = 4/3 × π × 7.05= 467.2035π
 Min V = 4/3 × π × 6.953 = 447.6031667π
 Actual V = 4/× π × 7.03 = 1372/3
 A.E. = 467.2035π − 447.6031667π
                              2
 A.E.= 9.80016665π
 % age error = 9.80016665π×100%
                                1372/3π
 % age error = 2.143%
 

 M1

 M1

 A1

 

 0.05 + 0.05 + 0.05
  7.0      7.0      7.0

   3/140 × 100%

    21/7%

     3  
 6.  Total Amount of instalments = 24×3,500=84,000
 Total payment = 84,000 + 14,000 = 98,000
 Amount borrowed = 98,000 − 56,000 = 42,000
 Let the rate of interest be r% per month
 84,000 = 42,000(1 + r/100)24
 84,000 = 1 + r/100)24
 42,000
 24√2 = 1 + r/100
 1.0293 = 1 + r/100 → 102.93 = 100 + r
 r = 102.93 − 100 = 2.93%

 M1

 M1

 A1

 Finding amount borrowed
     3  
 7.  Centre 3, −2, radius = 4

 (x − 3)2 + (y + 2)2 = 42
 x− 6x + 9 + y2 + 4y + 4 = 16
 x+ y2 − 6x + 4y + 9 + 4 −16 = 0

 x+ y− 6x + 4y − 3 = 0

 B1

 M1

 A1

 Identification of centre and radius
 Substituting centre and radius into general equation of a   circle

 x2 + y2 − 6x + 4y – 3 = 0 seen

     3  
 8.  P= kx + 1
         1 − kx
 P(1− kx) = kx + 1
 P− kxP= kx + 1
 P− 1 = kx + kxP2 or (− kxP− kx = 1 − P2)
 P2 − 1 = x(k + kP2) or x(− kP2 − k) = 1− P2
 x =  P− 1    or x =   1− P2 
       K + KP2           −kP2 − k
 

 M1

 M1

 A1

 

 Removal of square root

 Grouping of terms in x

     3  
 9.  Z = kX2
       √Y
 X= 120X = 1.2X1
         100
 Y1 = 64Y = 0.64Y
         100
 Z1 = kX12
         √Y1
 Z1 = k(1.2X)2
           √0.64Y
 Z1 = 1.44kX2 = 1.44Z
           0.8Y         0.8
 %age change = 1.44/0.8Z− Z  X 100%
                                    z
 %age change = 144/80 − 1 × 100% = 80%
 

 M1

 M1

 A1

 

 Value of Z1

 Expression for % change

     3  
10. mathst3Q46  

 B1

 B1

 

 Dividing PQ into 7 equal parts

 Point R correctly located

     2  
11.   1 − 5(3/10x) + 10(3/10x)2 − 10(3/10x)3 + 5(3/10x)4 – (3/10x)5

 1 − 3/2x + 910x227/100x3 + 81/2000x4243/100000x5
 1 − 3/10x = 0.97
 10 − 3x = 9.7
 10 − 9.7 = 3x→3x = 0.3→x = 0.1
 1 − 3/2(0.1) + 9/100 0.12

 = 0.859

 

 M1

 A1

 M1

 A1

 Expansion using the binomial coefficient
 Simplified as fractions

 Substituting x = 0.1 into the expansion

     4  
12.  5 × 250 + 2 × 300 + 1 × 450
                5+2+1
   = 287.50
     120 × 287.50
     100
 = 345

 M1

 M1
 A1

 
     3  
13.  P→5 hours→1/5→1 hour
 Q→5 −12/= 31/= 10/→ 3/10→1 hour
 1 hour both→1/+ 3/10 = 1/2
 1/→1hour
 1→1×1×2
 = 2 hours
 

 M1

 M1
 A1

 Amount of work done in 1 hour by both
     3  
14.  Let AOT = θ

 cos = 513
 θ = cos−1(5/13) = 67.38°

 Area of ∆ = 1/2×13×5×sin 67.38°
 = 29.99997
 Area of sector = 67.38/360×3.142×5×5
 = 14.70194167
 Shaded area = 29.99997 − 14.70194167 = 15.298 cm2

 M1

 M1

 M1

 A1

 

 Angle subtended by the radii at the centre

 Area of ΔTOA

 Area of sector

     4  
15.  Pat least 1 team won = P(RH') + P(R'H) + P(RH)
 = (5/8 x 1/7) + (3/8 x 6/7) + (5/8 x 6/7)
 = 5/56 + 18/56 + 30/56
 = 53/56
 

 M1

 M1

 A1

 P(R'H') = 3/8 x 1/= 3/56
 1 – 3/56
     3  
16. mathst3Q47    height = √41− 92 = 40
   tan (90 − θ) = 9/40
   sin θ = 40/41
   tan (90 − θ) + sin θ = 9/40 + 40/41
    = 1969
       1640

 B1

 B1

 B1

 

 Getting height of the triangle

 Values of tan (90 − θ ) and sin θ

 1969
 1640 seen

     3  
17.
  1.  
     x  − 2   − 1   0   1   2   3   4   5  6
     y  − 36  − 15 12  −15  −36


  2.    
    mathst3Q48

  3.  From graph
    1. x = 0 and x = 4
    2. 12
    3. x = −1 ± 0.2 and x = 3.4 ± 0.2
 

 B2

 S1

 P1

 C1

 L1

 B1

 B1

 B1, B1

 

 All values correct (B1 for at least 6 values correct)

 Given scales used

 Plotting the points

 Smooth curve drawn and labeled

 Line y = 5(x − 2) drawn

     10  
18.
  1. Sketch
    mathst3Q49
  2.  Calculations
    1. Consider ΔTQP
      t2 = p2 + q2 − 2pqcos T
      t2 = 14+ 16− 2×14×16×cos 50°
      t2 = 452 − 287.96885
      t = √164.03115
      t = 12.82 km
    2. Consider ΔRTQ
         q     t    
      sin Q    sin T
          q       =   26.31
      sin 50°   sin 100°
      q = 26.31sin 50°
                sin 100°
      q = 20.47 km
    3. Consider ΔTQP
        14    =  12.82
      sin P      sin 50°
      sin P = 14sin 50°
                     12.82
      P = sin−1(14sin 50°)
                         12.82
      P = 56.78°
      900 − 56.78° = 33.22°
      Bearing = 1800 + 33.22° = 213.22°

 B1

 M1

 M1
 A1

 M1

 A1

 M1

 A1
 B1
 B1

 

 Sketch correctly drawn

 Cosine rule applied

 Taking square root
 12.82 seen

 Sine rule applied

 20.47 seen

     10  
19.
  1. Taxable income in K£ per annum
    23,400 + 10,000 × 12
               20
    K£ 20,040 per annum
  2.  Net tax
    3,630×2 = 7,260
    3,630×3 = 10,890
    3,630×4 = 14,520
    3,630×5 = 18,150
    3,630×6 = 21,780
    1890×7 = 13,230
    Gross tax p.m.= 7,260 + 10,890 + 14,520 + 18,150 + 21,780 + 1323012
    = 85,830 = Kshs. 7,152.50
            12 
    Net tax = 7.152.50 − 1,162 = Kshs. 5,990.50
  3. Net pay
    = 23,400 + 10,000 − 5,990.50 +1 ,600 + 1000
    = 33,400 − 8,590.5
    = Kshs.24,809.5

 M1

 A1

 M1

 M1

 M1

 M1

 M1, A1

 M1

 A1

 

 First three bands

 Next two bands

 Last band

 Gross tax either p.a. or p.a.

     10  
20.
  1.  
    1. Common difference
      a = 3, S8 = 164
      164 = 8/2{2×3 + (8 − 1)d}
      164 = 4{6 + 7d}
      41 = 6 + 7d
      7d = 41 − 6 = 35
      d = 35/7 = 5
    2. finding n
      570 = n22×3 + n −1×5
      570 = n26 + 5n − 5)
      1140 = n(5n + 1)
      5n+ n −1140 = 0 
      mathst3Q53
  2.  
    1. 64, 64 + 4d, 64 + 6d
      64 + 4d = 64+6d
          64        64+4d
      642 + 384d = 642 + 512d + 16d2
      16d2 + 128d = 0
      d(d + 8) = 0
      d = − 8
    2. mathst3Q54
 

 M1

 A1

 M1

 M1

 A1

 M1

 M1

 A1

 M1

 A1

 
     10  
21.
  1.   
    1. RPS = PRS = 50° − base angles of isosceles triangle are equal
      PSR = 180° − 2×50°= 80° – sum of angles in a triangle = 1800
      PQR = 180° − 80° = 100°
      Opposite angles of cyclic quadrilateral are supplementary/add up to 1800
    2.  RPS = SRX = 50°
      Angle subtended by a chord and a tangent is equal to the angle subtended by same chord in alternate segment to the circle

    3.  RSX = PQR = 100° – interior angle equals to exterior opposite
      SXR = 180° − 100° − 50° = 30°
      Sum of angles in a triangle equals 180°

    4.  QPR = QSR = 300

      Angles subtended by same arc on the circumference
      QOR acute = 2×300 = 600
      Angle at the centre twice angle at the circumference
      Reflex ∠QOR = 360°− 60° = 300°
      Sum of angles at a point is 360°

  2.  Let PS = x
    x(x + 8) = 12
    x2 + 8x − 12 = 0
    mathst3Q55

 B1
 B1

 B1

 B1

 B1
 B1

 B1
 B1

 M1

 A1

 
     10  
 22
  1.  
    1. AN = AO + ON
      AN = −a + 5/6b

    2. BM = BO + OM
      BM = −b + 2/5a
  2.  
    1. OX = OA + AX
      OX = a + (h − a + 5/6b)
      OX = a − ha + 5/6hb
      OX = (1− h)a + 5/6hb
      OX = OB + BX
      OX = b + k−b + 25a
      OX = b − kb + 2/5ka
      OX = (1− k)b + 2/5ka

      Comparing the coefficients
      1 − h = 25k
      5 − 5h = 2k
      2k + 5h=5…i
      56h = 1−k
      5h = 6 − 6k
      6k + 5h = 6…ii

      2k + 5h = 5
      6k + 5h = 6
      −4k = −1→k =14
      1/4 + 5h = 5
      5h = 5 −1/2 = 9/2
      h = 9/2 x 1/5 = 9/10

    2. BX = 14BM
      4BX = BM→BX:BM = 1:4
      MX:MB = 3:4
 

 B1

 B1

 B1

 B1

 M1

 M1

 M1

 A1

 B1

 

 Value of AN

 Value of BM

 First expression of OX

 Second expression of OX

 Comparing the coefficients

 Forming the two equations

 Solving the two equations

 Values of h and k

      10  
 23
  1.  Mean
     Wages (K£)  f  x   fx   cf 
     20 – 29  2  23.5   49   2 
     30 – 39  5  34.5   172.5   7 
     40 – 49  9  44.5   400.5   16 
     50 – 59  11  54.5   599.5   27 
     60 – 69  10  64,5   645   37 
     70 – 79   6  74.5   447   43 
     80 – 89   4  84.5   338   47 
     90 - 99   3  94.5  283.5  50
       Ʃ = 50    Ʃ = 2935  
     
    Mean = 2935 = K£ 58.7
                   50
  2. Median 
    Median = 49.5 + (25 − 16) ×10
                                    11
    Median = 57.68
  3. Histogram
    mathst3Q50
 

 M1

 M1

 M1

 M1, A1

 M1

 A1

 S1

 P1

 L1

 

 Median

 

 All mid points (x) correct

 All fx correct

 cf column correct

 Substitution into median   formula

  Appropriate linear scales   used on both axes

      10  
24.
  1. P'(2, −1), Q'4, -1, R'(6, -3) and S'(2, -3)
  2. P''(−1, −2), Q''−1, −4, R''(−3, −6) and S''(−3, −2)
  3. Transformation – Enlargement
    Centre (0, − 6),
    Scale Factor – 3

  4. mathst3Q51

 B1

 B1

 B1

 B1

 B1

 B1

 B1

 B1

 B1
 B1
 B1

 PQRS drawn

 Reflection along y=0

 P'Q'R'S' drawn

 Coordinates P'Q'R'S'

 Rotation implied

 P''Q''R''S'' drawn

 Coordinates P''Q''R''S''

 P'''Q'''R'''S''' drawn

     10  

 

Join our whatsapp group for latest updates

Download Mathematics Paper 2 Questions and Answers - Form 3 End Term 3 Exams 2023.


Tap Here to Download for 50/-




Why download?

  • ✔ To read offline at any time.
  • ✔ To Print at your convenience
  • ✔ Share Easily with Friends / Students


Get on WhatsApp Download as PDF
.
Subscribe now

access all the content at an affordable rate
or
Buy any individual paper or notes as a pdf via MPESA
and get it sent to you via WhatsApp

 

What does our community say about us?

Join our community on:

  • easyelimu app
  • Telegram
  • facebook page
  • twitter page
  • Pinterest