Mathematics Paper 1 Questions and Answers - Form 3 Mid Term 3 Exams 2023

Share via Whatsapp

INSTRUCTIONS TO CANDIDATES

  • This paper consists of two sections; Section I and Section II.
  • Answer ALL the questions in Section I and ONLY FIVE questions in Section II.
  • Show all the steps in your calculations, giving your answer at each stage in the space provided below each question.
  • Marks may be given for correct working even if the answer is wrong.
  • Non programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.

SECTION I (50 Marks)

Answer all the questions in the spaces provided.

  1. Without using tables or a calculator evaluate; (3 marks)
    −24 ÷ −8 × 5 −(−30)  
      −16 × 4 ÷ 2 + (−8)
  2. Factorize completely 3x2 − 2xy − y2 (2 marks)
  3. A Kenyan bank buys and sells foreign currencies as shown below.
     Currency  Buying (Ksh)    Selling (Ksh) 
     1 Hong Kong dollar
    100 Japanese yen 
      9.84
     76.08
     9.87
     76.12
    A tourist arrived in Kenya with 100 500 Hong Kong Dollars and changed the whole amount to Kenyan shillings. While in Kenya he spent Ksh. 430 897 and changed the balance to Japanese yen before leaving for Tokyo. Calculate the amount in Japanese Yen that he received. (3 marks)
  4. Use logarithm tables to evaluate (4 marks)
    F3MathMT3P12023Q4
  5. The sides of a triangle were measured to 1 decimal as 6.5cm, 7.4cm and 8.2cm respectively. Calculate the percentage error in its perimeter
    (4 marks)
  6. Line L1 passes through points A(2,−4) and B(6, −8). Find the equation of the line L2, the perpendicular bisector of AB leaving your answer in the form ax + by + c = 0 . (3 marks)
  7. In the figure below, O is the centre of the circle. AC = 6 cm, BC = 9 cm and ∠ACB = 132°
    F3MathMT3P12023Q7
    1. Calculate length AB correct to 2 decimal places. (2 marks)
    2. Calculate the area of the circle. (2 marks)
  8. Evalute, without using mathematical tables or the calculator, the expression. (3 marks)
    2 log105 − ½log1016 + 2log1040
  9. Rationalize the denominator and leave your answer in surd form. (3 marks)
          3      
    2√5 + √2
  10. Solve the quadratic equation 6a2 = 5a + 4 using completing the square method. (3 marks)
  11. The hire purchase terms of a cupboard is a deposit of Ksh 4,400 and six monthly installments of Ksh 900 each. The hire purchase price is 175% of the cost price while the cash price is 25% more than the cost price .Calculate the cash price of the cupboard. (3 marks)
  12. Construct triangle PQR in which PQ=QR=5 cm and ∠ PRQ=35°. Measure PR. (3 marks)
  13. A and B are two matrices. If A = F3MathMT3P12023Q13 find B given that A2 = A + B. (3 marks)
  14. Make n the subject of the formulae in A = P(1 + r/100)n (3 marks)
  15. Solve the following inequality and show your solution on a number line. (3 marks)
    4x − 3 ≤ ½(x + 8) < x + 5
  16. The sixth term of an arithmetic progression is 27 and the tenth term is 43. Find the 16th term. (3 marks)

SECTION II (50 Marks)

Answer ONLY five the questions in the spaces provided.

  1. Mr. Omwega is employed. His basic salary is Kshs. 21, 750 and is entitled to a house allowance of Kshs 15, 000 and a travelling allowance of Kshs 8, 000 per month. He also claims a family monthly relief of Kshs 1, 056 per month. Other deductions are;
    • Union dues Kshs 200 and
    • Co-operative shares Kshs 4, 500 per month.
      The table below shows the tax rates for the year.
       Income (Kshs per annum)  Tax rates
       1 - 116,600
       116,161 - 225, 600
       225, 601 - 335, 040
       335,041 - 444, 480
       Over 444, 480
        10%
        15%
        20%
        25%
        30%
      Calculate;
      1. Mr. Omwega’s annual taxable income. (2 marks)
      2. The tax paid by Mr. Omwega in the year. (6 marks)
      3. Mr. Omwega’s net income per month. (2 marks)
  2.  
    1. Complete the table below giving your values correct to 2 decimal places. (2 marks)
       x°  −90  −75  −60  −45  −30  −15   0  15  30  45  60  75  90
       3 cos 2x°  −3  −2.6    0  1.5    3  2.6    0  −1.5    −3
       Sin (2x + 30)°  −0.5    −1  −0.87    0  0.5    1    0.5  0  −0.5
    2. On the grid provided, draw on the same axes the graph of y=3cos 2x° and y=sin 2x+30° for interval -90°≤x≤90°. Take the scale 1 cm represent 15° on x – axis and 2 cm represent 1 unit on the y – axis. (4 marks)
    3. Use the graph in (b) above to solve the equation;
      1. 3cos 2x° =sin 2x+30° (2 marks)
      2. 6cos 2x° +5=0 (2 marks)
  3. Triangle ABC has coordinates A (−4,1, B (−1,2) and C (−3,4).
    1. On the grid provided, draw triangle ABC. (1 mark)
    2. Triangle A'B'C' is the image of triangle ABC under an enlargement with scale factor -1 about the origin. On the same grid draw triangle A'B'C' and state its coordinates. (3 marks)
    3. Triangle A''B''C'' is the image of triangle A'B'C' under a rotation of −90° about the origin. On the same grid draw triangle A''B''C'' and state its coordinates. (3 marks)
    4. Under a certain translation T, the image of points A''B''C'' are mapped onto triangle A'''B'''C''' such that point A'' is mapped onto A'''2, 3.
      1. Find the translation T. (1 mark)
      2. Find the coordinates of the image points B''' and C''' and plot triangle A'''B'''C''' on the same grid. (2 marks)
  4. A parent has two children whose age difference is 5 years. Twice the sum of the ages of the two children is equal to the age of the parent.
    1. Taking x to be the age of the elder child, write an expression for
      1. The age of the younger child. (1 mark)
      2. The age of the parent (1 mark)
    2. In twenty years’ time, the product of the children’s age will be 15 times the age of their parent
      1. Form an equation in x and hence determine the present possible ages of the older child. (4 marks)
      2. Find the present possible ages of the parent. (2 marks)
      3. Determine the possible ages of the younger child in twenty years’ time. (2 marks)
  5. The masses of 40 students were measured to the nearest kilogram and recorded as shown below.
    52             58               54            51              59            53              56              51
    43             41               53            58              54            65              58              59
    49             63               49            49              47            45              46              52
    52             55               52            55              49            57              53              63
    42             45               46            48              60            49              48              53
    1. Use this data to complete the table below. (4 marks)
       Mass in Kg  Class mid point x   Frequency f   fx
       41 - 45      
       46 - 50  48  10  480
       51 - 55      
       56 - 60      
       61 - 65  63  3  189
           Σf = 40  Σfx = 
    2. Calculate ;
      1. The mean mass. (2 marks)
      2. The median mass (2 marks)
    3. Draw a frequency polygon for the distribution. (2 marks)
  6. The figure below shows two pulleys with centres A and B of radii 9 cm and 6 cm respectively. C and D are contact points of the belt with the pulleys. The distance between the centres of the two pulleys is 50 cm. a belt is tied around the two pulleys as shown.
    F3MathMT3P12023Q222
    Calculate,
    1. Length DC (2 marks)
    2. The length of arc DE (3 marks)
    3. The length of arc CF (3 marks)
    4. The total length of the belt. (2 marks)
  7. The figure below shows a rectangle attached to a semi-circle
    F3MathMT3P12023Q23
    1. Calculate;
      1. the area of the figure (3marks)
      2. the perimeter of the figure (3 marks)
    2. If the figure represents a cross-section of a steel girder of length 9m, determine the volume of the steel girder in cubic centimetres (2 marks)
    3. If the mass of the steel girder is 306kg, calculate its density in g/cm3. (2 marks)
  8. Five towns P,Q, R S and T are situated such that Q is 200 km east of P. R is 300 km from Q on a bearing of 150° from Q. S is 350 km on a bearing of 240° from R. T is 250 km from S and its bearing from P is 160°.
    1. Using a scale of 1 cm to represent 50 km, draw a diagram representing the position of the towns. (5 marks)
    2. From the diagram, determine:
      1. The distance in km from P to T. (1 mark)
      2. The bearing of S from Q. (1 mark)
    3. A plane heading to town R takes off from town P and flies upward at a constant angle which is less than 90°. After flying a distance of 100 km in the air, it sees a town R at angle of depression of 50°. By scale drawing, find the horizontal distance of the plane from R at this point.
      (3 marks)

MARKING SCHEME

 NO WORKING   MARKS  REMARKS
 1  Numerator
−24÷−8×5+30
3×5+30
15+30=45
Denominator
−16×4÷2+(−8)
−16×2−8
−32−8=−40
Num =   45   = −11/8
Den     −40   
 


 M1




M1
A1
 
 2.  3x2 − 3xy + xy − y2
3xx − y + yx − y
(x−y)(3x+y)
 M1
 M1
 A1
 
 3.  100 500 dollars to shillings = 9.84×100 500
                                            = sh. 988 920
Balance after expenses = Sh. 988 920-430 897
                                      = Sh. 558 023
Amount received in Japanese Yen = 558 023 ×100  
                                                                   75.12
                                     = 742 842 Yen
 
 M1


 M1

 A1   
 
 4.  F3MathMT3P12023Ans4

 


 B1

 B1

 B1

 

 A1

 


 All logarithms

 Addition and subtraction
 Cube root


 Correct answer
 5. Absolute error = 0.05
Actual Perimeter = 6.5 + 7.4 + 8.2 = 22.1cm

Max perimeter = 6.55 + 7.45 + 8.25 = 22.25cm
Min perimeter = 6.45 + 7.35 + 8.15 = 21.95 cm

% error =½(22.25 − 21.95) × 100%
                          22.1
= 0.34  × 100%
   44.2
=0.679%



 B1


 M1

 A1
 
 6. Mid-point of AB = (2+6,−4 + (−8)) = (4, −6)

                                2          2   
m1 = −8−(−4) = −4 = −1
           6 − 2        4
m2 = 1

Equation of L21/1 = y −(−6)
                                     x − 4
x − 4 = y + 6
x − y − 10 = 0

 M1

 M1





 A1
 Correct coordinates of mid-point

 Gradient of line L2





 Equation of L2
 7.
  1. AB2 = 6+ 92 − 2(6 × 9) cos 132°
            = 36 + 81 − 108 cos 132°
            = √189.266
             = 13.76 cm
  2. Area = πR2
             = 22/7 ×    (13.76)   ×  (13.76)  
                           2sin 132      2sin 132
             = 22/7 × 9.26 × 9.26 = 269.49 cm2
  M1

 
 A1
 M1


 A1
 
 8. log1025 − log104 + log101600
log10 (25 × 1600)
                 4
log10 10 000
   =   4

 M1

 M1

 A1

 
 9.        3(2√ 5 − 2√         
(2√5 + √2) (2√5 − √2)
         6√5 − 3√ 2         
20 − 2√10 + 2√10 − 2
6√5 − 3√2 
     20−2
6√5 − 3√2 1/3√5 − 1/6√2
       18
 M1


 M1


 A1
 
 10. 6a2 − 5a = 4
a25/6a = 23
a25/6a + 25/144 = 2/3 + 25/144
(a − 5/12)2 = 0.8403
a − 5/12 = 0.8403 = ±0.9167
a = 0.9167 + 5/12 OR − 0.9167 + 5/12
a = 1.333 OR −0.5
 

 M1

 M1

 A1
 
 11.  HP = 41400 + (900×6) = 9800/ =
Cost price 100/175 × 9800 = 5600 / =
∴ Cash price = 125/100 × 5600
= 7000 /=
 M1

 M1
 A1
 
 12.  F3MathMT3P12023Ans12
 PR = 8.3 ± 0.1cm 
 

 


 B1


 B1


 
 B1
 

 

 Lines PQ = QR = 5cm


 ∠ R = 35°, ∠Q = 110° and complete triangle




 13  F3MathMT3P12023Ans13  B1

 M1


 A1
 
 14. (1 + r/100)n = A/P
n log (1 + r/100)n = Log A/P
n =    log A/P       
      log(1+r/100)
 M1
 M1

 A1
 
 15.

4x − 3 ≤ 0.5x + 8
4x − 3 ≤ 0.5x + 4
4x − 0.5x ≤ 4 + 3
3.5x ≤ 7
x ≤ 14
0.5(x+8) < x+5
0.5x+4 < x+5
0.5x−x < 5−4
x >−2
−2 < x ≤ 14
F3MathMT3P12023Ans15








 M1

 A1
 B1








 Both inequalities solved

 Compound inequality
 Number line

 16.

a + 5d = 27
a + 9d = 43−  
     −4d = −16
d = 4
a + 20 = 27 ;a = 7
16th term = 7 + 15(4) = 60 + 7
                = 67

 B1

 

 M1

 A1

 
 17.
  1. (21,750 + 15,000 + 8,000 ) × 12
    = Kshs 537,000
  2. Calculation of tax due
    1st slab = 116 160 × 10% = Shs. 11 616
    2nd slab = 109 440 × 15% = Shs. 16 416
    3rd slab = 109 440 × 20% = Shs. 21 888
    4th slab = 109 440 × 25% = Shs. 27 360
    5th slab = 92 520 × 30% = Shs. 27 756
    Tax due = 11 616 + 16 416 + 21 888 + 27 360 + 27 756
                  = 105 036
    Net tax = 105 036 − 12 672
                = Sh. 92 364
  3. Net income = Gross income − total deductions

    = (21 750+15 000+8 000) − (92 364 + 200 + 4 500)
                                                       12
    = 44 750 − 12 397
    = Shs. 32 353

  M1
  A1


 M1

 M1

 M1
 A1
 M1
 A1

 M1


 A1
 
 18.
  1.  
     
     x°  −90  −75  −60  −45  −30  −15   0  15  30  45  60  75  90
     3 cos 2x°  −3  −2.6  −1.5  0  1.5  2.6  3  2.6  1.5   0  −1.5  −2.6  −3
     Sin (2x + 30)°  −0.5  −0.87  −1  −0.87  −0.5  0  0.5  0.87  1  0.87  0.5  0  −0.5
  2.  
    F3MathMT3P12023Ans18b                                                             
  3.   
    1. x = − 54° and x = 33°
    2. 6cos 2x° + 5 = 0
      3cos 2x° = −52 = −2.5
      x = −75° and x = 75°
   
 19. 

 F3MathMT3P12023Ans19                                    

  1. B1 - DIagram
  2. B1 Plotting
    B1   Diagram
    B 1 Coordinates A'(2, −1) B'(−1, −2) and C'(1, −4)B 1 plotting
  3. B 1 Diagram
    B 1 Coordinates A''(−1, −2) B''(−2, 1) and C''(−4, −1)
  4.  
    1.  
      F3MathMT3P12023Ans19d
    2.  
      F3MathMT3P12023Ans19dii
   
 20. 
  1.  
    1. x − 5
    2. [x + (x−5)] × 2
      4x − 10
  2.  
    1. x + 20x + 15 = 15(4x+10)
      x2 − 25x + 150 = 0
      (x −10) (x − 15) = 0
      x = 10 or x = 15
    2. 4 × 10 − 10 or 4 × 15 − 10
         = 30 or 50
    3. (10 − 5) + 20 or (15 − 5) + 20
      = 25 or 30
 
  B1
  B1
  B1

 M1
 M1
 A1

 M1
 A1
 M1
 A1
  Correct equation solving
 21.

a). The completed table is show below.

 Mass in Kg  Class mid point x   Frequency f   fx
 41 - 45  43  5  215
 46 - 50  48  10  480
 51 - 55  53  14  742
 56 - 60  58  8  464
 61 - 65  63  3  189
     Σf = 40  Σfx = 2090

b) 

(i)Mean mass x̄ = ∑f x
                           ∑f
                      = 2090 
                            40
                      = 52.25 kg

(ii) Median = 50.5 + (20 – 15) × 5
                                     14
                  = 50.5 + 25/14
                  = 52.29 kg

c) Frequency polygon on the attached graph.
F3MathMT3P12023Ans21c



















B 1 – column for x

B 1 – column for f

B 1 – column for fx

B 1 – Σf
x = 2090

M1
A1


 M1
 A1





B1 all points plotted                       




B1 polygon drawn





 
 22

  1. DC2 = 502 − 32 = 2500 − 9 = 2491
    DC = √2491 = 49.91 cm
  2. cos θ = 3/50 = 0.06  θ = 86.52 × 2 = 173.12°
    θ =360 − 173.12 = 186.88
    l = 186.88 × 22/7 × 2 × 9 = 29.37 cm
             360
  3. sin β = 3/50 = 0.06; β = 3.4398
        γ = 2(90+3.4398) = 186.88
    360 − 186.88 = 173.12
    l = 173.12 × 2 × 22/7 × 6 = 18.14 cm
             360
  4. Total length = 49.91 + 29.37 + 49.91 + 18.14
                         =147.33 cm
 M1
 A1

 B1
 M1A1



 B1


 M1A1
 A1
 
 23.
  1.  
    1. Area of curved part = 22/7 × 4 × 4 × 0.5
                                     = 25.14 cm2
      Area of Rectangular part = 12×6 = 72cm2
         Total Area of solid = 25.14 + 72
                                      = 97.14cm2
    2. Curved length = 22/7 × 8 =12.57
      Total perimeter
      = 12.57 + 2 + 6 + 12 + 6 + 2
      = 40.57cm
  2. Volume of solid = 97.14 × 900
                             = 87.43 cm3
  3. Density = 306×1000 g/cm3 = 3.499
                        87.43 
                  ~3.5g/cm3
 

 M1
 M1

 A1
 M1

 M1
 A1
 M1
 A1
 M1

 A1
 
 24.
  1.  
    F3MathMT3P12023Ans24
  2.  
    1. 4.4 × 50 = 220 ± 5km
    2. 180 + 18 = 198°
  3. B1 - angle of depression
    B1 - Construction of perpendicular bisector of PQ from M
    B1 - 6 × 50 = 300km





 B1


 B1















 
Join our whatsapp group for latest updates

Download Mathematics Paper 1 Questions and Answers - Form 3 Mid Term 3 Exams 2023.


Tap Here to Download for 50/-




Why download?

  • ✔ To read offline at any time.
  • ✔ To Print at your convenience
  • ✔ Share Easily with Friends / Students


Get on WhatsApp Download as PDF
.
Subscribe now

access all the content at an affordable rate
or
Buy any individual paper or notes as a pdf via MPESA
and get it sent to you via WhatsApp

 

What does our community say about us?

Join our community on:

  • easyelimu app
  • Telegram
  • facebook page
  • twitter page
  • Pinterest